1. Basic matrix operations using the interactive mode of MATLAB: Do the following using MATLAB.

a) Enter the following matrices:

\[A = \begin{bmatrix} 3 & -3 & 1 \\ 4 & -5 & 2 \\ 4 & -5 & 2 \end{bmatrix} \quad B = \begin{bmatrix} -1 & 4 & -2 \\ -2 & 5 & -2 \\ -1 & 2 & 0 \end{bmatrix} \quad C = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \]

b) Find the eigenvalues and eigenvectors of \(A \) and of \(B \) (use the \texttt{eig} command). Also find the rank of \(A \) and of \(B \).

c) Find the product of \(A \) and \(B \) and of \(B \) and \(A \). Also find the product \(AC \) and \(BAC \). Can you find the product \(CB \) (try it)? Why?

d) Find \(A' + B \) (\(\cdot' \) indicates the transpose of \(\cdot \)).

e) Find \(B^{-1} \) (use the \texttt{inv} command) and find \(X = B^{-1}C \). Verify that \(X \) satisfies \(BX = C \). Can you find \(A^{-1} \) (try it)! Why? (Recall the result of part b).

f) Type \(A(1:2, 2:3) \) and \(B(1,:) \). What do you obtain in each case? Obtain a vector whose elements are the second column of \(A \).

2. Programming mode of MATLAB: Write a MATLAB program to calculate \(x(n) = \sum_{k=0}^{n} C' B^k C \) for \(n = 0, 1, \ldots, N \) (or for \(n = N, N + 1, \ldots, 0 \) if \(N \) is negative, in which case the sum must be taken from \(k = n \) to \(k = 0 \)) and plot \(x(n) \) vs. \(n \). Here, \(B \) and \(C \) are as in Question 1 and \(N \) is read from the input terminal using the \texttt{input} command at a prompt “Enter \(N > \)”. When \(k \) is negative, \(B^k \) means \((B^{-1})^{(-k)} \); and \(B^0 \) is the identity matrix, by definition. Your program must produce an error message if \(N \) is not an integer. Run this program for \(N = 10, N = -10 \), and for \(N = 0.5 \).