EEM 342: Fundamentals of Control Systems
2006-2007 Spring Semester Final Exam
Time: 120 minutes; Total Points: 100

One size-A4 formula sheet and a hand calculator, not capable of symbolic operations, may be used.

Solve either
• Questions 0, 1, 2, and 3 only, or
• Questions 0, 1, and 4 only.

0. (2 points) Write the group you are registered to on the top-right corner of your answer sheet.

1. Consider the system shown below. The mechanical system shown on the left consists of a body of mass M, which is connected to a fixed point by a linear spring of spring constant k and a damper which provides viscous friction of coefficient β. The body can move back and forth in one direction on a frictionless surface. The displacement of the body from its equilibrium is denoted by q. The voltage applied to the electrical circuit shown on the right is proportional to the velocity, \dot{q}, of the body. The proportionality constant is α. The force applied to the body, u, forms the input of the system. The output of the system is $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$, where y_1 is the current through the circuit and y_2 is the voltage across the inductor.

![Mechanical System Diagram](image1)

![Electrical Circuit Diagram](image2)

a) (15 points) Find the transfer function matrix from u to y.

b) (15 points) Choose a state vector for this system and write the state equations.

2. (28 points) Consider the sampled-data system whose block diagram is given below, where the two samplers of period T are synchronous. ZOH indicates a zero order hold and UD indicates a unit delay (a delay element of delay time T). Find all values of K (real) and T (real and positive) for which this system is stable. Indicate those values on the K vs. T plane.

![Sampled-Data System Diagram](image3)
3. Consider the linear time-invariant (LTI) continuous-time plant with transfer function
 \[G(s) = \frac{2}{s^2 + 3s + 2} \]. It is desired to design a controller for this system such that the plant
 output can track constant reference signals with no steady-state error and no overshoot happens in the transient response.

 a) (5 points) Is it possible to satisfy the given requirements using a proportional (P) controller? Why?
 b) (15 points) Design a continuous-time proportional-integral (PI) controller to satisfy the given requirements and to obtain as fast response as possible (i.e., settling time must be as small as possible). Draw a block diagram showing the implementation of the controller.
 c) (5 points) For the closed-loop system obtained in part b, calculate the steady-state error in response to a unit ramp reference.
 d) (15 points) Design a continuous-time proportional-integral-derivative (PID) controller to reduce the steady-state error in response to a unit ramp reference to 10% of the value found in part c, without violating the stated requirements and without slowing the response obtained in part b. Draw a block diagram showing the implementation of the controller.

4. (68 points) Consider linear time-invariant (LTI) continuous-time plants with transfer function
 a) \(G(s) = \frac{2s}{s^2 + 3s + 2} \) b) \(G(s) = \frac{s^2 + 1}{s^2 + 3s + 2} \)
 It is desired to design a LTI controller, to be implemented on a digital computer, such that the closed-loop system is internally stable and the output of the plant can track ramp reference signals with no steady-state error. For each plant, determine whether it is possible to design such a controller. If it is not possible, explain the reason. If it is possible, then

 either:

 First design a continuous-time controller to achieve the requirements. Draw a block diagram for the continuous-time implementation. Then, choose an appropriate sampling period (explain how you choose it) and find the equivalent discrete-time controller. Also write a computer program to implement this controller on a digital computer and draw a block diagram showing the implementation of the actual system.

 or:

 Choose an appropriate sampling period (explain how you choose it) and find the discrete-time equivalent of the plant (which must, of course, be preceded by a D/A converter which includes a ZOH). Then, design a discrete-time controller to achieve the requirements. Also write a computer program to implement this controller on a digital computer and draw a block diagram showing the implementation of the actual system.