1. (50 points) Consider linear time-invariant (LTI) plants with transfer function

 a) \(G(s) = \frac{s}{s-2} \)
 b) \(G(s) = \frac{s+2}{s-2} \)

 For each plant, determine whether it is possible to design a LTI strictly-proper controller such that:
 i) the closed loop system is internally stable, ii) the output of the plant can track constant reference signals with no steady-state error in the presence of sinusoidal additive disturbances of frequency 0.5 Hz, iii) the output settles to its steady-state value at a rate no slower than that of \(e^{-2t} \), and iv) the steady-state error in response to a ramp reference signal is no more than 5% of the ramp slope. If your answer is positive, design such a controller (you have to verify that the requirements would be satisfied) and draw the block diagram of the closed-loop system. If your answer is negative, explain the reason.

2. (30 points) Consider the system shown below:

 a) Draw the loci of the poles of the closed-loop system on the complex plane as (i) \(K \) is varied from 0 to \(\infty \); (ii) \(K \) is varied from 0 to \(-\infty \). You should indicate the asymptotes (if any) as \(K \rightarrow \pm \infty \); you should calculate the break-away and break-in points (if any), the angles of departure and arrival from/to complex “open-loop poles” and “open-loop zeros” (if any), and the points where the root loci crosses the imaginary axis.

 b) By using the root-locus graph you obtained, find the values of \(K \) for which the closed-loop system is stable.

3. (20 points) Consider the LTI system whose block diagram is shown below. Choose \(K_1, K_2, \) and \(K_3 \) such that the system is stable and, in response to a unit step input, (i) steady-state value of the output is \(-3\); (ii) maximum percent overshoot is 15%; and (iii) the output settles to 10% of its steady-state value within 2 seconds.
1. For the output, \(y \), to track the reference, \(r \), the closed-loop system must be in a unity-feedback configuration:

\[
\begin{align*}
&\quad \quad \ Quad
the roots on or to the left of the vertical line passing through \(-2\); equivalently the polynomial
\[p(s) = \frac{d(s-2)}{s^3 + (K-10)s^3 + (4K + 36 + \pi^2)s^2 + (4K - 56 - 6\pi^2)s + (32 + 8\pi^2) \]
must have all the roots on or to the left of the imaginary axis. By applying the Routh-Hurwitz test, we find that, to satisfy this requirement we must have \(K \geq 32.36\). Thus, to satisfy both requirements (iii) and (iv), we must have \(K \geq \text{max}(32.36, 12.34) = 32.36\). Therefore, we can use the above defined controller with any \(K \geq 32.36\). Note that, rather than finding all \(K\) which satisfy requirement (iii), you can try a specific \(K\) (which may be guessed from the root-locus graph) and show that the requirement is satisfied. e.g., for \(K = 35\),
\[p(s) = s^4 + 25s^3 + 185.87s^2 + 24.78s + 110.96, \]
which (by applying the Routh-Hurwitz test) has all the roots in the left-half complex plane. With this \(K\),
\[C(s) = \frac{35s^2 + 280s + 560}{s(s^2 + \pi^2)}. \]
The block diagram of the closed-loop system is as shown above.

2. The closed-loop transfer function (from \(r\) to \(y\)) is
\[G_c(s) = \frac{K(s+2)}{(2s^3 + 2s^2 - 4) + K(s+2)}. \]

a) The closed-loop poles are the roots of
\[p(s) = (s^3 + s^2 - 2) + \frac{K}{2}(s+2), \]
where we divided the denominator polynomial by 2 to make it monic. In standart form, we have
\[p(s) = a(s) + \kappa b(s), \]
where \(a(s) = s^3 + s^2 - 2 = (s-1)(s^2 + 2s + 2), b(s) = s + 2, \) and \(\kappa = \frac{K}{2}\). Thus, the open-loop poles (the roots of \(a(s)\)) are at +1 and \(-1 \pm j\), and the open-loop zero (the root of \(b(s)\)) is at \(-2\). The root loci consists of three branches each starting at one of the open-loop poles for \(K = 0\). One of these branches go to the open-loop zero at \(-2\) as \(K\) (equivalently, \(\kappa\)) goes to \(\pm \infty\), the other two go to infinity along the asymptotes with center at \(\sigma_A = \frac{-1 - 1 + 1 - (-2)}{3-1} = \frac{1}{2}\).

i) As \(K\) (equivalently, \(\kappa\)) is varied from 0 to \(\infty\), the angle of the asymptotes are \(\theta_A = \pm \frac{\pi}{2}\) rad = \(\pm 90\) degrees. The branch which starts at the open-loop pole at +1 goes to the open-loop zero at \(-2\) along the real axis. The branch which starts at the open-loop pole at \(-1 + j\) departs from that pole with an angle of
\[\phi_d = 180 - \left(180 - \tan^{-1}\left(\frac{1}{2}\right)\right) - 90 + 45 = -18.43 \text{ degrees} \]
and goes to infinity along the asymptote which has the angle of +90 degrees. To find the point where this branch crosses the imaginary axis, we apply the Routh-Hurwitz test to \(p(s)\) and determine that the imaginary axis is crossed when \(\kappa = 2\) at \(j\sqrt{2}\). The branch which starts at the open-loop pole at \(-1 - j\) is symmetric to the branch which starts at the open-loop pole at \(-1 + j\), with respect to the real axis. Thus, it departs with an angle of \(-(-18.43) = 18.43 \text{ degrees}\), crosses the imaginary axis at \(-j\sqrt{2}\) for \(\kappa = 2\) and goes to infinity along the asymptote which has the angle of \(-90\) degrees. The root-locus graph is as shown in Figure 1.

ii) As \(K\) (equivalently, \(\kappa\)) is varied from 0 to \(-\infty\), the angle of the asymptotes are 0 and 180 degrees. The branch which starts at the open-loop pole at +1 goes to infinity along the asymptote which has the angle of 0 degrees (i.e., the positive real axis). The branch which starts at the open-loop pole at \(-1 + j\) departs from that pole with an angle of \(\phi_d = 180 + \phi_d^+ = 161.57 \text{ degrees}\), where \(\phi_d^+\) is the angle of departure for \(\kappa > 0\), and goes to the break-in point at \(\sigma_1 = -2.93\), which is the only real root of
\[a'(s)b(s) - b'(s)a(s) = 2s^3 + 7s^2 + 4s + 2 = 0. \]
At this point, this branch meets with the
branch which comes from the open-loop pole at $-1-j$ (which departs with an angle of -161.57 degrees). After that, one of these two branches goes to the open-loop zero at -2 along the real axis and the other branch goes to infinity along the negative real axis (i.e., along the asymptote which has the angle of 180 degrees). The root-locus graph is as shown in Figure 2.

Figure 1: The root-locus graph for $\kappa > 0$.

Figure 2: The root-locus graph for $\kappa < 0$.

3
b) For $\kappa < 0$, one of the branches is always in the right-half complex plane. For $\kappa > 0$, the branch which starts at the open-loop pole at $+1$ gets into the left-half plane at the origin. At this point $\kappa = \frac{1 \times \sqrt{2} \times \sqrt{2}}{2} = 1$. The branches which start at the open-loop poles at $-1 \pm j$ leave the left-half complex plane for $\kappa = 2$, as determined in part a. Thus, the closed-loop system is stable for $1 < \kappa < 2$, i.e., for $2 < K < 4$.

3. The transfer function from u to y is $G(s) = \frac{K_1}{s^2 - K_2 s - K_3}$. Therefore, for stability, we need $K_2 < 0$ and $K_3 < 0$. To have a steady-state output of -3, in response to a unit step input, we must have $\lim_{s \to 0} sG(s) \frac{1}{s} = \frac{K_1}{-K_3} = -3$, or

$$K_1 = 3K_3.$$ \hfill (1)

Since the system is a second order system with no finite zeros, to have a maximum percent overshoot of 15%, we must have $e^{-\zeta \pi / \sqrt{1 - \zeta^2}} = 0.15$ or $\zeta = \frac{|\ln(0.15)|}{\sqrt{\pi^2 + (\ln(0.15))^2}} = 0.517$, where

$$2\zeta \omega_n = -K_2 \text{ and } \omega_n^2 = -K_3.$$ Thus,

$$K_2 = -2\zeta \sqrt{-K_3} = -1.034\sqrt{-K_3}.$$ \hfill (2)

Using the envelope settling time, requirement (iii) is satisfied if $\frac{1}{\zeta \omega_n} \ln \left(0.1 \sqrt{1 - \zeta^2} \right) \leq 2$. With $\zeta = 0.517$, this means $\omega \geq 2.38$ or $K_3 \leq -5.66$. If, for example, we let $K_3 = -6$, from (1) and (2) we find $K_1 = -18$ and $K_2 = -2.53$.

4