EEM 451 Industrial Control Systems

Hakkı Ulaş Ünal
Dept. of Electrical-Electronics Eng.
Anadolu University, Turkey
What does Industrial Control System mean?

- Relays
What does Industrial Control System mean?

- Relays
- Programmable Control Systems
What does Industrial Control System mean?

- Relays
- Programmable Control Systems
- PID controllers
What does Industrial Control System mean?

- Relays
- Programmable Control Systems
- PID controllers
- Scada Systems
What does Industrial Control System mean?

- Relays
- Programmable Control Systems
- PID controllers
- Scada Systems
- any control systems used in industrial process
Industrial Control Systems

What does Industrial Control System mean?

- Relays
- Programmable Control Systems
- PID controllers
- Scada Systems
- any control systems used in industrial process

An industrial control system is union of several control systems used in industrial process.
Industrial Control Systems

What does Industrial Control System mean?

- Relays
- Programmable Control Systems
- PID controllers
- Scada Systems
- any control systems used in industrial process

An *industrial control system* is union of several control systems used in industrial process.

Industrial process is the set of consecutive steps that is applied to the raw material to get end product.
Milk Factory

- Store the collected milks in refrigerated silos
Milk Factory

- Store the collected milks in refrigerated silos
- Testing by taking sufficient samples whether the milk quality is same as in previous ones
Milk Factory

- Store the collected milks in refrigerated silos
- Testing by taking sufficient samples whether the milk quality is same as in previous ones
- Pasteurization: heating/cooling milk at specific temperature for certain time duration
Milk Factory

- Store the collected milks in refrigerated silos
- Testing by taking sufficient samples whether the milk quality is same as in previous ones
- Pasteurization: heating/cooling milk at specific temperature for certain time duration
- ... etc
Store the collected milks in refrigerated silos
Testing by taking sufficient samples whether the milk quality is same as in previous ones
Pasteurization: heating/cooling milk at specific temperature for certain time duration
... etc
Packing
Milk Factory

- Store the collected milks in refrigerated silos
- Testing by taking sufficient samples whether the milk quality is same as in previous ones
- Pasteurization: heating/cooling milk at specific temperature for certain time duration
- ... etc
- Packing
- Transportation to the main distributors
Milk Factory

- Store the collected milks in refrigerated silos
- Testing by taking sufficient samples whether the milk quality is same as in previous ones
- Pasteurization: heating/cooling milk at specific temperature for certain time duration
- ... etc
- Packing
- Transportation to the main distributors

Some of the process variables in milk factory are...:
Milk Factory

- Store the collected milks in refrigerated silos
- Testing by taking sufficient samples whether the milk quality is same as in previous ones
- Pasteurization: heating/cooling milk at specific temperature for certain time duration
- ... etc
- Packing
- Transportation to the main distributors

Some of the process variables in milk factory are...:
Why do we pay attention to these variables
Process types

Common process schemes:

- Discrete process
Process types

Common process schemes:

- Discrete process
- Continuous process
Process types

Common process schemes:

- Discrete process
- Continuous process
- Batch process
Discrete process

Some of the industrial processes are discrete process such as packaging application in industry. The inputs and outputs of discrete processes are discrete data flow.
Some of the industrial processes are discrete process such as packaging application in industry. The inputs and outputs of discrete processes are discrete data flow.
The industrial processes, which are characterized by uninterruptible variables in time and continuity, are continuous process.
Continuous process

The industrial processes, which are characterized by uninterruptible variables in time and continuity, are continuous process.
Batch process

Batch process is defined as “a process that leads to the production of finite quantities of material subjecting quantities of input materials to an ordered set of processing activities over a finite period of time” (Instrument society of America, 1995).
Batch process

Batch process is defined as “a process that leads to the production of finite quantities of material subjecting quantities of input materials to an ordered set of processing activities over a finite period of time” (Instrument society of America, 1995). A process is called as a “Batch process” if it consists of a consecutive steps and at the end, a finite quantity of the end product is produced.
Batch process

Batch process is defined as “a process that leads to the production of finite quantities of material subjecting quantities of input materials to an ordered set of processing activities over a finite period of time” (Instrument society of America, 1995). A process is called as a “Batch process” if it consists of a consecutive steps and at the end, a finite quantity of the end product is produced.
Process control

Process control can be defined as automatic monitoring and functioning of an industrial process.
Process control

Process control can be defined as automatic monitoring and functioning of an industrial process.

Common process control schemes:

- Discrete process control:
- Continuous process control
- Batch process control
Process control

Process control can be defined as automatic monitoring and functioning of an industrial process.

Common process control schemes:

- Discrete process control:
- Continuous process control
- Batch process control

Let us consider the process in Milk factor
Process control

Process control can be defined as automatic monitoring and functioning of an industrial process.

Common process control schemes:

- Discrete process control:
- Continuous process control
- Batch process control

Let us consider the process in Milk factor

Process variables should be controlled:

- Pressure process control
- Temperature process control
- Level process control
- Flow process control
Process control

In industrial process, control of machines and some equipments should be taken into account.
Process control

In industrial process, control of machines and some equipments should be taken into account

Motion Control:

- Velocity control
- Position control
- Acceleration control
- Torque control
Controller types

- Open-loop control
- Closed-loop control
 - In order to provide the stability of system with a designed controller against the differences between the actual model and the mathematical model, which is called *uncertainty*
Controller types

- Open-loop control
- Closed-loop control
 - In order to provide the stability of system with a designed controller against the differences between the actual model and the mathematical model, which is called *uncertainty*.

In industry, especially in pulp and paper industry, 90% of the controllers are PI. However, it is reported than, most of them have poor performance due to bad controller tuning. The design approaches in general do not take into account:
Controller types

- Open-loop control
- Closed-loop control
 - In order to provide the stability of system with a designed controller against the differences between the actual model and the mathematical model, which is called uncertainty

In industry, especially in pulp and paper industry, 90% of the controllers are PI. However, it is reported than, most of them have poor performance due to bad controller tuning. The design approaches in general do not take into account:

- Delays
- Non-linearities
- Aging
- Uncertainty
Industrial Control elements

\[r(t) \rightarrow e(t) \rightarrow K \rightarrow u(t) \rightarrow P \rightarrow y(t) \]

\[n(t) \]
Industrial Control elements

\[r(t) \rightarrow e(t) \rightarrow K \rightarrow u(t) \rightarrow P \rightarrow y(t) \]

\[n(t) \]

\[r(t) \rightarrow e(t) \rightarrow PI \rightarrow u(t) \rightarrow Oven \rightarrow y(t) \]

\[n(t) \]
Industrial Control elements

Sensors and Actuators

Sensor: An electronic device converts a physical signal or event to an electrical, or optical signal.

- Optic Sensors
- Physical Sensors
- Measurement Sensors
Industrial Control elements
Sensors and Actuators

Sensor: An electronic device converts a physical signal or event to an electrical, or optical signal.
- Optic Sensors
- Physical Sensors
- Measurement Sensors

Actuator: An electromechanical device generates some type of forces, for instance, electrical, magnetic, pneumatic, hydraulic, to drive shafts of the equipments.
- Electric actuators
- Magnetic actuators
- Pneumatic actuators
- Hydraulic actuators
- Piezoelectric actuators
Industrial Control elements
Switches, Transducers, and Valves

Switches: It is a device of two states on or off

Transducer: It is usually an electrical, electronic, electro-mechanical device that converts input physical energy in one form into output physical energy of another form.

Valve: It is a device regulates the flow of materials.

- Limit switches
- Photoelectric switches
- Proximity switches
- Ultrasonic transducer
- Control valve